
MA 635, Fall 2015

Assignment 12.

This homework is due Thursday, Dec 3.

Collaboration is welcome. If you do collaborate, make sure to write/type your
own paper and credit your collaborators. Your solutions should contain full proofs.
Bare answers will not earn you much. Extra problems (if there are any) are due
December 11.

This homework is somewhat long, so it will have weight 1.5 compared to a usual
homework.

(1) (9.3.36) Define the function ψ : C[a, b] → R by

ψ(f) =

∫ b

a

f(x)dx for each f ∈ C[a, b].

Show that ψ is Lipschitz on C[a, b] with the metric induced by the maximum
norm ∥ · ∥∞.

(2) (9.5.64) Let X be a totally bounded metric space. If f is a uniformly
continuous mapping from X to a metric space Y , show that f(X) is totally
bounded. Is the same true if f is only required to be continuous?

(3) (9.5.55, Baby Tychonoff’s theorem) Prove that if metric spaces (X, ρ) and
(Y, σ) are compact, then so is X × Y with product metric.

(4) (9.5.69) For a compact metric space (X, ρ), show that there are points
u, v ∈ X for which ρ(u, v) = diamX.
(Reminder: diamX = sup{ρ(x, y) | x, y ∈ X}.)

(5) (10.3.33) Let (X, ρ) be a compact metric space and T a mapping X → X
such that

ρ(T (u), T (v)) < ρ(u, v) for all u ̸= v ∈ X.

Show that T has a unique fixed point. (Hint: Option 1: Use Extreme Value
theorem directly. Option 2: Show that if there are no fixed points, the
function ρ(T (u), T 2(u))/ρ(u, T (u)) from X to R is continuous and there-
fore reaches its maximum. Then follow the proof of Banach Contraction
Principle using Problem 7 of HW11.)

The problems below can be found in the Section 10.2 of textbook.

(6) (a) Recall that in Problem 3 of Homework 11 we defined interior intE,
exterior extE and boundary bdE of a subset E of a metric space.
Show that for every subset E of a metric X, X = intE ∪ extE ∪ bdE
and the union is disjoint.

(b) Recall that a subset A of a metric space X is called dense in X if every
nonempty open subset of X contains a point of A. Further, a subset of
a metric space X is called hollow in X if it has empty interior. Show
that for a subset E of a metric space X, E is hollow in X if and only
if X \ E is dense in X.

— see next page —
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(7) Prove the following theorem:
(The Baire Category Theorem.) Let X be a complete metric space. Let
{On} be a countable collection of open dense subsets of X. Then the
intersection

∩∞
n=1 On also is dense.

(Hint: You need to show that an arbitrary open ball B(x0, r0) contains
a point of

∩∞
n=1 On. Start by saying that B(x0, r0) ∩ O1 is nonempty

(why) and open (why), therefore contains an open ball B(x1, r1) and a
smaller closed1 ball B1 = B(x1, r1/2). Repeat argument with the open ball
B(x1, r1/2) and O2, and so on. Get a descending sequence of closed balls
B1, B2, . . .. Apply the Cantor Intersection Theorem.)

(8) Prove the following theorem:
(The Baire Category Theorem.) Let X be a complete metric space. Let
{Fn} be a countable collection of closed hollow subsets of X. Then the
union

∪∞
n=1 Fn is also hollow.

(Hint: Apply Problem 6b to the assertion of Problem 7.)

(9) Let X be a complete metric space and {Fn} a countable collection of closed
subsets of X. If

∪∞
n=1 Fn has nonempty interior (for example, if

∪∞
n=1 Fn =

X), prove that at least one of the Fn’s has nonempty interior.
(Hint: Pass to appropriate closed subset of X. Use Problem 8.)
The above result is also called Baire Category Theorem.

(10) Prove the following theorem.
Let F be a family of continuous real-valued functions on a complete metric
space X that is pointwise bounded in the sense that for each x ∈ X, there
is a constant Mx for which

|f(x)| ≤Mx for all f ∈ F .
Then there is nonempty open subset O of X on which F is uniformly
bounded in the sense that there is a constant M for which

|f | ≤M on O for all f ∈ F .
(Hint: Define En = {x ∈ X : |f(x)| ≤ n for all f ∈ F}. Use Problem 9.)

1. Extra Problems

(11) (10.2.20) Let Fn be the subset of C[0, 1] consisting of functions for which
there is a point x0 in [0, 1] such that |f(x) − f(x0)| ≤ n|x − x0| for all
x ∈ [0, 1].
(a) Show that Fn is closed.
(b) Show that Fn is hollow. (Hint: Show that for f ∈ C[0, 1] and r > 0,

there is a piecewise linear “saw-like” function g ∈ C[0, 1] for which
ρ∞(f, g) < r and the left-hand and right-hand derivatives of g on [0, 1]
are greater than n+ 1.)

(c) Conclude by Baire Category theorem that C[0, 1] ̸=
∪∞

n=1 Fn.
(d) Show that each h ∈ C[0, 1] \

∪∞
n=1 Fn is not differentiable at any point

in [0, 1]. (Hint: If f is differentiable at x0 and continuous on [0, 1], then
|f(x) − f(x0)|/|x − x0| is bounded “close” to x0 by differentiability,
and bounded “far” from x0 by boundedness of f on [0, 1]; so it belongs
to some Fn.)

Note. Congratulations, you proved that there are continuous functions on
[0, 1] that are not differentiable anywhere. Moreover, you proved that the
set of such functions is dense in C[0, 1].

(12) Let f : R → R be continuous and have derivatives of all orders. Suppose
that for each x ∈ R, there is index n = n(x) for which f (n)(x) = 0. Show
that f is a polynomial. (Hint: Use Baire Category Theorem.)
Comment. If you know that n is the same for all x, the statement easily
follows by calculus.

1A closed ball B(x, r) is the set {y ∈ X | ρ(x, y) ≤ r}. It is a closed set.


